PRÉPARATION À L'AGRÉGATION EXTERNE : THÉORÈMES DE CARTAN-DIEUDONNÉ

TONY LIMAGNE

Le développement ci-dessous est adapté pour les leçons 108, 158, 161 et 191.

1. Le cas euclidien

Soit E un espace euclidien. On note $\mathcal{O}(E)$ le groupe des isométries vectorielles de E, c'est-à-dire l'ensemble des endomorphismes f de E tels que

$$\forall x, y \in E, \quad (f(x), f(y)) = (x, y).$$

Lorsque H est un hyperplan de E, la symétrie orthogonale sur H est un élément de $\mathcal{O}(E)$ appelée la réflexion de E d'hyperplan H.

Théorème 1 (Cartan-Dieudonné "vectoriel"). Soit E un espace euclidien de dimension n. Toute isométries vectorielles de E, distincte de id_E , s'écrit comme la composée d'au plus n réflexions de E. De plus, il existe des isométries vectorielles de E qui s'écrivent exactement comme la composé de n réflexions de E.

Démonstration. On procède par récurrence sur la dimension n de E. Lorsque E est un espace euclidien de dimension 1 on a $O(E) = \{id_E, -id_E\}$ et $-id_E$ est bien une réflexion (associée à l'hyperplan $\{0\}$). Fixons $n \ge 2$ et supposons le théorème 1 vrai pour les espaces euclidiens de dimension n-1. Soit E un espace euclidien de dimension n et soit $f \in O(E)$ distincte de $\{id_E\}$.

Supposons que f admet 1 pour valeur propre. Soit $e \in E$ un vecteur propre associé et $H = e^{\perp}$. On observe que pour tout $h \in H$ on a

$$(f(h), e) = (f(h), f(e)) = (h, e) = 0,$$

si bien que $f(H) \subseteq H$. Et puisque f(e) = e on a $f_{|H} \neq \mathrm{id}_H$ car sinon $f = \mathrm{id}_E$. Ainsi $f_{|H}$ est une isométrie vectorielle de H distincte de id_H . On peut donc appliquer l'hypothèse de récurrence (H est de dimension n-1): il existe des réflexions s_1, \ldots, s_r de H telles que

$$f_{|H} = s_1 \circ \cdots \circ s_r$$
.

Fixons $i \in [1, r]$. Notons H_i l'hyperplan de H associé à s_i et e_i un vecteur normal à H_i dans H. On a la décomposition

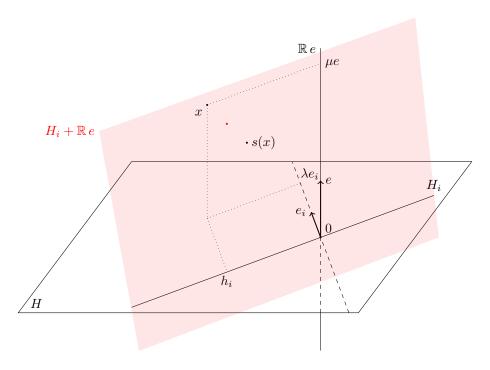
$$E = H \overset{\perp}{\oplus} \mathbb{R} \, e = H_i \overset{\perp}{\oplus} \mathbb{R} \, e_i \overset{\perp}{\oplus} \mathbb{R} \, e.$$

Soit $x \in E$ que l'on écrit $x = h_i + \lambda e_i + \mu e$ avec $h_i \in H$ et $(\lambda, \mu) \in \mathbb{R}^2$. On prolonge s_i en une réflexion de E en posant

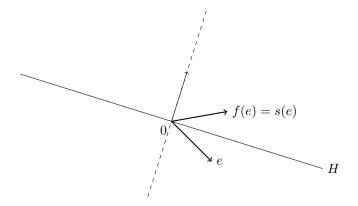
$$s_i(x) = h_i + \mu e - \lambda e_i.$$

Et puisque $s_i(e) = e = f(e)$ on a alors $f = s_1 \circ \cdots \circ s_r$. Ici on a $r \leq n-1$ par hypothèse de récurrence.

Date: Année 2024.



Supposons que f n'admet pas 1 pour valeur propre. Fixons $e \in E$ non nul et soit a = f(e) - e. La réflexion s de E d'hyperplan a^{\perp} vérifie s(e) = f(e) et donc s(f(e)) = e.



Ainsi 1 est valeur propre de l'isométrie vectorielle $s \circ f$. On a bien $s \circ f \neq \mathrm{id}_E$ car sinon f est la réflexion s qui admet 1 pour valeur propre. On peut donc appliquer le point précédent : il existe s_1, \ldots, s_r des réflexions de E telles que

$$s \circ f = s_1 \circ \cdots \circ s_r,$$

ou encore $f=s\circ s_1\circ \cdots \circ s_r$. Ici on a $r+1\leqslant n$ toujours d'après le point précédent. À ce stade, nous venons de montrer que toute isométrie vectorielle de E s'écrit en produit d'au plus n réflexions. Soient f une isométrie vectorielle de E et $s_1\circ \cdots \circ s_r$ une décomposition de f en produit de réflexions de E. Supposons que $r\leqslant n-1$. Notons H_1,\ldots,H_r les hyperplans respectifs de s_1,\ldots,s_r . Comme $f=s_1\circ \cdots \circ s_r$ et

que $(s_i)_{|H_i} = \mathrm{id}_{H_i}$ pour tout i, la restriction de f au sous-espace $H = H_1 \cap \cdots \cap H_r$ est l'identité. Et puisque H_1, \ldots, H_r sont des hyperplans de E on sait que

$$\dim(H) \geqslant n - r \geqslant 1.$$

On en déduit qu'il existe $e \in H$ non nul tel que f(e) = e. En résumé, une isométrie vectorielle de E se décompose en produit au plus n-1 réflexions si et seulement si elle admet 1 pour valeur propre. Or $-id_E$ est une isométrie vectorielle de E qui n'admet pas 1 pour valeur propre, elle se décompose donc en un produit d'exactement n réflexions de E.

Référence : [T1, Thème 5, §1, Théorème 1.1.2].

(1) Le théorème dit en résumé que le groupe O(E) est engendré par l'ensemble des réflexions de E, avec en prime une précision sur l'écriture.

- (2) À isométrie vectorielle fixée, on peut être encore plus précis sur la décomposition : si $f \in O(E)$ et si p_f est la codimension de $\ker(f - \mathrm{id}_E)$ alors f peut s'écrire comme composée de p_f réflexions, et ne peut pas s'écrire comme produit de moins de p_f réflexions (voir [T2, Chap. XX1, §4, Théorème 4.4]).
 - 2. Théorème de cartan Dieudonné "affine"

On se place dans un espace affine euclidien \mathscr{E} de dimension n et de direction E.

Proposition 3. Soit f une isométrie de \mathscr{E} . Il existe un couple (g, t_a) formé d'une isométrie g de $\mathscr E$ ayant un ensemble non vide G de points fixes et d'une translation t_a de vecteur $a \in \overrightarrow{G}$ tel que

$$f = t_a \circ g = g \circ t_a.$$

Démonstration. Unicité. Supposons que $f = t_a \circ g$ avec g et a comme dans l'énoncé. On a $\overrightarrow{f} = \overrightarrow{t_a} \circ \overrightarrow{g}$ et donc $\ker(\overrightarrow{f} - \mathrm{id}_E) = \ker(\overrightarrow{g} - \mathrm{id}_E) = \overrightarrow{G}$. Soit $A \in G$ un point fixe de g. On a $f(A) = t_a(A)$ et donc $\overrightarrow{Af(A)} = \overrightarrow{At_a(A)} = a \in \ker(\overrightarrow{f} - \mathrm{id}_E)$.

Soit $f = t_{a'} \circ g'$ une autre décomposition. Pour tout point fixe A' de g' on a aussi

 $\overrightarrow{A'f(A')} = a' \in \ker(\overrightarrow{f} - \mathrm{id}_E)$ si bien que par la relation de Chasles

$$a - a' = \overrightarrow{AA'} - \overrightarrow{f}(\overrightarrow{AA'}) \in \ker(\overrightarrow{f} - \mathrm{id}_E) \cap \operatorname{Im}(\overrightarrow{f} - \mathrm{id}_E).$$

Or on a $E = \ker(\overrightarrow{f} - \mathrm{id}_E) \stackrel{\perp}{\oplus} \mathrm{Im}(\overrightarrow{f} - \mathrm{id}_E)$ puisque \overrightarrow{f} est une isométrie de E. En particulier on a en déduit que a = a' et donc $t_a = t_{a'}$, ce qui implique que g = g'.

Existence. On se donne $a \in \ker(\overline{f} - \mathrm{id}_E)$. Il suffit de trouver $A \in \mathscr{E}$ tel que $\overrightarrow{Af(A)} = a$, puis ensuite de poser $g = t_{-a} \circ f$ qui est bien une isométrie de \mathscr{E} vérifiant $f = t_a \circ g$. Fixons O une origine de \mathscr{E} et soit $b \in E$ tel que $\overrightarrow{Of(O)} = a - \overrightarrow{f}(b) - b$. On a pour tout point $M \in \mathcal{E}$.

$$\overrightarrow{Mf(M)} = \overrightarrow{MO} + \overrightarrow{Of(O)} + \overrightarrow{f(O)}f(\overrightarrow{M}),$$

$$= \overrightarrow{MO} + a + \overrightarrow{f}(b) + \overrightarrow{f}(\overrightarrow{OM}),$$

$$= a + (\overrightarrow{f} - \mathrm{id}_E)(b - \overrightarrow{OM}).$$

On observe qu'en choisissant A tel que $\overrightarrow{OA}=-b$ on obtient bien $\overrightarrow{Af(A)}=a.$ Enfin on a bien $g \circ t_a = t_a \circ g$ car pour tout point $M \in \mathscr{E}$

$$g(M+a) = g(M) + \overrightarrow{g}(a) = g(M) + \overrightarrow{f}(a) = g(M) + a.$$

Référence: [T1, Thème 5, §2, Théorème 2.1.3].

Corollaire 4 (Cartan-Dieudonné "affine"). Si f est une isométrie de $\mathscr E$ distincte de id $_{\mathscr E}$ alors f s'écrit comme la composée d'au plus n réflexions affines de $\mathscr E$.

Démonstration. D'après le théorème 1 il existe des réflexions vectorielles s_1, \ldots, s_r de E telles que $\overrightarrow{f} = s_1 \circ \cdots \circ s_r$. On note F l'ensemble des points fixes de f.

Supposons $F \neq \emptyset$ et soit $A \in F$. Fixons $i \in [1, k]$. Pour tout $M \in \mathscr{E}$ on pose

$$\sigma_i(M) = A + s_i(\overrightarrow{AM}),$$

pour avoir $\overrightarrow{\sigma_i} = s_i$: σ_i est donc une réflexion affine de $\mathscr E$ qui fixe A. Les applications affines f et $\sigma_1 \circ \cdots \circ \sigma_k$ coïncident en A et ont mêmes applications linéaires associées : elles sont donc égales.

Supposons $F = \emptyset$. D'après la proposition 3, il existe une translation t_a et une isométrie g de \mathscr{E} possédant au moins un point fixe telles que $f = t_a \circ g$. On conclut en appliquant le cas précédent à g et en observant qu'une translation peut s'écrire comme composée de deux réflexions affines.

Référence : [T1, Thème 5, §2, Théorème 2.2.1].

- 3. Quelques questions bêtes auxquelles il faut absolument savoir répondre rapidement
 - (1) On se place dans le plan euclidien \mathbb{R}^2 . Trouver la décomposition en produit de réflexions de $-\mathrm{id}_{\mathbb{R}^2}$.
 - (2)
 - (3)

Références

- [T1] C. Tisseron, Géométries affine, projective et euclidienne, Formations des enseignants et formation continue, Hermann, 2000.
- [T2] P. Tauvel, Algèbre pour l'agrégation interne, Masson, 1996.